

Contents lists available at ScienceDirect

Journal of Solid State Chemistry

journal homepage: www.elsevier.com/locate/jssc

Correlation between optical constants and crystal chemical parameters of ZrW_2O_8

Robert D. Shannon^a, Reinhard X. Fischer^{b,*}, Olaf Medenbach^c, Eric Bousquet^d, Philippe Ghosez^d

^a Geological Sciences/CIRES, University of Colorado, Boulder, CO 80309, USA

^b Universität Bremen, FB 5 Geowissenschaften, Klagenfurter Straße, D-28359 Bremen, Germany

^c Institut für Mineralogie, Fakultät für Geowissenschaften, Ruhr-Universität Bochum, Universitätsstraße 150, D-44780 Bochum, Germany

^d Département de Physique, Université de Liège, B-5, B-4000 Sart Tilman, Belgium

ARTICLE INFO

Article history: Received 3 February 2009 Received in revised form 4 July 2009 Accepted 18 July 2009 Available online 25 July 2009

Keywords: ZrW₂O₈ Refractive indices Optical dispersion Electronic polarizability Born effective charges

ABSTRACT

The refractive indices of ZrW₂O₈, measured at wavelengths of 435.8–643.8 nm, were used to calculate n_D at $\lambda = 589.3$ nm and n_{∞} at $\lambda = \infty$ from a one-term Sellmeier equation. Refractive indices, n_D and dispersion values, A, are, respectively, 1.8794 and 114×10^{-16} m². The high dispersion, relative to other molybdates, tungstates and Zr-containing compounds, is attributed to the low value of $E_o = 7.7$ eV and mean cation coordination number. Total electronic polarizabilities, α_{total} , were calculated from n_{∞} and the Lorenz–Lorentz equation. The unusually large difference between the observed polarizability of 20.087 Å³ and the calculated total polarizability α_T of 17.59 Å³ ($\Delta = +12.4\%$) is attributed to (1) a large *M*–O–W angle, (2) a high degree of W 5*d*–O_(terminal) 2*p* and Zr *nd*–O 2*p* hybridization, and (3) unusually high oxygen displacement factors, *B*(O), normalized to *B*(W).

© 2009 Elsevier Inc. All rights reserved.

1. Introduction

ZrW₂O₈ is unusual because of its negative thermal expansion coefficient over the range 0.3-1050 K [1]. The refractive index, n_D , of ZrW_2O_8 was reported to be 1.669 [1], but this value appears to be rather low for a tungstate. Other tungstates such as CaWO₄, SrWO₄, BaWO₄, ZnWO₄ and PbWO₄ have *n*_D values ranging from 1.84 to 2.27. In this paper we report the redetermination of the refractive index and the optical dispersion of ZrW₂O₈ with an emphasis on its total polarizability and the correlation between its crystal chemical parameters (M-O-M') angles of bridging O atoms with metal ions, equivalent isotropic oxygen displacement factors, and Born effective charges (Z^*) of metal and oxygen atoms). Here we attempt to explain the unusually large deviation of the experimentally redetermined value of total electronic polarizability from the calculated polarizability by (1) comparison of M-O-M' angles in ZrW₂O₈ with M-O-M' angles in other compounds having bridging oxygen atoms, (2) analysis of oxygen displacement factors in ZrW₂O₈ and (3) calculation of Born effective charges of Zr, W, and O.

* Corresponding author. E-mail address: rfischer@uni-bremen.de (R.X. Fischer).

2. Experimental and computational details

The sample used for refractive index measurements was a clear, colorless fragment about $3 \times 2 \times 1.5 \text{ mm}^3$ in size. An analysis of the crystal using a CAMECA CAMEBAX SX-50 electron-microprobe, wavelength-dispersive spectrometers, and the PAP matrix correction procedure [2] resulted in the composition $Zr_{1.019}$ $W_{1.988}O_8$. The principal method of preparation of small crystal prisms and the procedure for measuring the refractive index and dispersion were described in detail by Medenbach and Shannon [3] together with a comprehensive discussion of the errors involved in the minimum-deviation method. The error limits are estimated to be less than $\Delta n = \pm 0.0005$.

First-principles calculations have been performed using the density functional theory (DFT) formalism and a pseudopotential/ plane-wave approach as implemented in the ABINIT package [4]. We used Teter pseudopotentials [5], considering as valence electrons the 2*s* and 2*p* levels of O atoms, the 4*s*, 4*p*, 4*d* and 5*s* levels of Zr atoms and the 5*s*, 5*p*, 5*d* and 6*s* levels of W atoms. The local density approximation (LDA) was used to approximate the exchange–correlation energy while a cut-off energy of 45 Ha on the plane-wave expansion and a $2 \times 2 \times 2$ Monkorsh-Pack mesh of *k*-points gave converged results on the quantities of interest (violation of the Born effective charge neutrality less than 0.01*e*). The Born effective charges and the electronic dielectric tensor were determined by linear response using density functional perturbation theory [6].

^{0022-4596/\$ -} see front matter \circledcirc 2009 Elsevier Inc. All rights reserved. doi:10.1016/j.jssc.2009.07.035

Table 1

Experimental and calculated (LDA) non-equivalent atomic positions (reduced coordinates) (with Wyckoff site symbols in parentheses) for ZrW_2O_8 in the cubic structure with the space group No.198 ($P2_13$).

	Experimental [1]	LDA (present study)
Zr(4a), x = y = z	0.0004	0.0030
W1 (4 <i>a</i>), $x = y = z$	0.3409	0.3428
W2 (4 <i>a</i>), $x = y = z$	0.6009	0.5964
01 (4 <i>a</i>), $x = y = z$	0.4941	0.4876
02 (4 <i>a</i>), $x = y = z$	0.2322	0.2359
O3 (12b)		
x	0.0529	0.0577
y	-0.2069	-0.2038
Z	-0.0619	-0.0606
O4 (12b)		
x	0.0697	0.0644
у	-0.0575	-0.0520
z	0.2132	0.2184

Table 2

Experimental refractive indices, optical dispersion values *A*, *B* [Eq. (1)], single oscillator values E_d , E_o [Eq. (4)], and total polarizabilities α_T [Eq. (2)] of ZrW₂O₈.

wavelength λ (nm)	n
643.8	1.8709
576.9	1.8819
546.0	1.8887
508.6	1.8984
480.0	1.9087
468.0	1.9139
435.8	1.9294
Α	$114 \times 10^{-16} m^2$
В	0.4279
Eo	7.73 eV
Ed	18.07 eV
$n_{\infty} (\lambda = \infty)$	1.8268
$n_D (\lambda = 589.3 \mathrm{nm})$	1.8794
α_T	20.087\AA^3

The calculations were performed at the experimental volume, with a cell parameter a = 9.1546 Å, and the atomic positions were relaxed until the residual force on any atom is less than 10^{-5} Ha/ Bohr. The experimental and calculated atomic positions are compared in Table 1. The theoretical accuracy is satisfactory and comparable to that previously achieved in LDA calculations on comparable systems [7]. Our LDA calculation predicts for the relaxed structure an indirect electronic bandgap of 3.8 eV (between R and X points), which surprisingly overestimates a previously reported theoretical value of 2.84 eV [8]. As discussed below, our calculation nevertheless provides a refractive index n_{∞} in good agreement with the experiment. Moreover, reducing the bandgap to its experimental estimate using a scissor correction [9] makes the agreement significantly worse, which leads us to suggest the real amplitude of the bandgap in α -ZrW₂O₈ may be higher than 2.8 eV.

3. Results

Table 2 lists refractive indices of ZrW_2O_8 as a function of λ and the dispersion parameters *A*, *B*, E_o and E_d obtained by fitting to the one-term Sellmeier expression used by Wemple and Domenico [10]:

$$\frac{1}{n^2 - 1} = -\frac{A}{\lambda^2} + B \tag{1}$$

where *A*, the slope of the plot of $(n^2-1)^{-1}$ vs. λ^{-2} , gives a measure of the dispersion and *B*, the intercept of the plot at $\lambda = \infty$ gives $n_{\infty} = (1+1/B)^{1/2}$. Calculated values of n_{∞} and n_D were derived from the dispersion plots. The calculated value of the total electronic polarizability, 20.087 Å³, was determined from the Lorenz–Lorentz equation:

$$\alpha_T = \frac{1}{b} V_m \cdot \frac{n_{\infty}^2 - 1}{n_{\infty}^2 + 2}$$
(2)

where the Lorentz factor *b* is defined as $b = 4\pi/3$, V_m the molar volume in Å³, and n_{∞} the refractive index at $\lambda = \infty$. The observed value of n_D was found to be 1.8794, significantly higher than the value of 1.669 reported in [1]. We also note that the reported value $n_{\infty} = 1.8268$ in Table 2 is in qualitative agreement with our first-principles LDA result of $n_{\infty} = 1.90$. Using a scissor correction that adjusts the calculated bandgap to its estimated experimental value we get however a still larger value $n_{\infty} = 1.95$, suggesting that the real bandgap could be larger than expected and, a priori, still larger than our theoretical value.

4. Discussion

4.1. Deviation of total experimental from calculated polarizability of ZrW_2O_8

In Shannon and Fischer [11], total electronic polarizabilities were calculated from a set of empirical polarizabilities in conjunction with a polarizability additivity rule to give agreement to within 4% with 387 experimental total polarizabilities of oxides, hydroxides, oxyhydroxides, oxyfluorides, oxychlorides, and hydrates. Using these polarizabilities [11] and

$$\alpha_T(\text{ZrW}_2\text{O}_8) = \alpha_e(\text{Zr}^{4+}) + 2\alpha_e(\text{W}^{6+}) + 8\alpha_e(\text{O}^{2-})$$
(3)

where $\alpha_e(Zr^{4+}) = 2.023 \text{ Å}^3$, $\alpha_e(W^{6+}) = 2.500 \text{ Å}^3$, and $\alpha_e(O^{2-}) =$ 1.321 Å³, we calculate the total electronic polarizability α_T of ZrW_2O_8 to be 17.59 Å³. Thus the observed value, 20.087 Å³, shows a large discrepancy, ($\Delta = \alpha_{obs} - \alpha_{calc}$), of +12.4% from the calculated polarizability. In the above study [11], Δ values greater than +4% were found in crystal structures with corner-shared octahedra characterized by network and chain structures involving infinite Ti-O-Ti, Nb-O-Nb, or Ta-O-Ta chains such as the AMO3 perovskites CaTiO₃, SrTiO₃, BaTiO₃, KNbO₃, and KTaO₃ and tungsten-bronze type compounds such as Ba_{1-x}Sr_xNb₂O₆. In addition, two compounds, Tb₂Mo₃O₁₂ and Gd₂Mo₃O₁₂, with hetero-ion Tb-O-Mo and Gd-O-Mo networks formed mostly from corner-shared Tb(Gd)O7 and MoO4 groups showed moderately large $\Delta = 4.0\%$ and 3.4% values [11]. ZrW₂O₈, having a structure characterized primarily by corner-shared ZrO₆ and WO₄ groups, is yet another example of a compound with hetero-ion chains, Zr-O-W, that shows large deviations of observed from calculated total electronic polarizability.

To better understand the ZrW₂O₈ structure, we compare it with Tb₂Mo₃O₁₂ and Gd₂Mo₃O₁₂. Fig. 1 shows that the ZrW₂O₈ bridging oxygen O1 and O2 are shared between ZrO₆ and WO₄ groups (W–O distances = 1.79 and 1.81 Å), O3 is "quasiterminally" bonded to W2 at 1.72 Å and O4 is terminally bonded to W1 at 1.71 Å [1]. "Quasi-terminal" O3 is different from O4 in that the W2–O3 distance is slightly longer than the W1–O4 distance (1.71 Å) because of weak interaction of O3 with W1 at 2.41 Å [1]. The Zr–O–W bonds in ZrW₂O₈ are similar in nature to the Tb(Gd)–O–Mo bonds but differ in detail in that the \langle Zr–O–W \rangle angles are larger (163°) than the \langle Tb(Gd)–O–Mo \rangle bonds (156°) with d(Mo–O) = 1.70–1.83 Å and there are terminal oxygen atoms in ZrW₂O₈. In addition, only $\frac{5}{6}$ of the O's in

Fig. 1. Projections of the crystal structure of ZrW_2O_8 after [12]: (a) projection parallel **c** rotated by 3° about **a** and **b**. WO₄ tetrahedra are green (W1O₄ plane, W₂O₄ hatched), ZrO_6 octahedra are blue. Terminal O4 atoms are shown as red spheres, pseudoterminal O3 atoms are yellow with long bonds to W1 and (b) projection of the local environments of the cations and anions parallel **c** rotated by 20° about **b**. (For interpretation of the references to the color in this figure legend, the reader is referred to the web version of this article.)

Fig. 2. Delta vs. $\langle M$ -O- $M' \rangle$, $\langle M$ -O- $M \rangle$, and $\langle A$ -O- $W \rangle$ angles for titanates, niobates, tantalates, molybdates, and tungstates. The solid line represents the linear regression omitting ZrW₂O₈.

Table 3

Deviations of observed from calculated total polarizability vs. $\langle M$ -O- $M \rangle$, $\langle M$ -O- $M' \rangle$ or $\langle A$ -O- $W \rangle$ angle.

Compound ^a	Number of data points	$\langle M-O-M \rangle$, $\langle M-O-M' \rangle$, and $\langle A-O-W \rangle$ angles ^a	Deviationª ∆ (%)
Titanates			
TiO_2 (rutile)	2	120	-1.4
TiO_2 (anatase)	3	120	0.8
CaTiO ₃	1	157	5.0
SrTiO ₃	6	180	7.8
BaTiO ₃	2	175	5.1
Niobates and tantalate	s		
LiNbO ₃	3	140	1.9
KNbO ₃	3	174	6.8
KTaO ₃	1	180	7.3
Molybdates and tungs	tates		
Nd ₂ Mo ₃ O ₁₂	1	126	-0.6
Tb ₂ Mo ₃ O ₁₂	1	148	4.0
$Gd_2Mo_3O_{12}$	2	148	3.4
ZnWO ₄	3	128	2.0
CaWO ₄	3	126	-0.8
SrWO ₄	1	127	-3.2
BaWO ₄	1	129	-3.1
PbWO ₄	4	129	-0.1
Sc ₂ W ₃ O ₁₂	1	157	-
$Y_2W_3O_{12}$	1	160	-
ZrW ₂ O ₈	1	163	12.4

^a Data from [11]; bold numbers indicate unusually high values of Δ where ($\Delta = \alpha_{obs} - \alpha_{calc}$).

Tb(Gd)₂Mo₃O₁₂ are purely bridging bonds; $\frac{1}{6}$ are bonded to 1 Mo and 2 Tb(Gd) with Tb(Gd)–O–M angles of 126°.

4.1.1. Effect of M–O–M' angle

Enhanced polarizabilities in compounds containing Ti-O-Ti, Nb-O-Nb, or Ta-O-Ta chains were attributed to increased covalence of the M-O-M (O bridging two metal ions M of the same kind) bonds associated with anomalously large Born effective charges (BEC's) of both M and O atoms and increased *M*–O–*M* angles. The interdependence of Δ , $\langle M$ –O–*M* \rangle angle (angle brackets indicate mean values) and BEC's in the titanates, niobates and tantalates was attributed [11] to the degree of covalence determined by orbital overlap of oxygen 2p states with metal *d* states increasing as the M-O-M angle approaches 180°. Because BEC's had not been calculated for Tb₂Mo₃O₁₂ and $Gd_2Mo_3O_{12}$, we first looked for a correlation of Δ with M–O–M angle(s) in perovskites, M–O–M' angle(s) in Tb₂Mo₃O₁₂, Gd₂Mo₃O₁₂, and ZrW₂O₈ and A-O-W angle(s) in AWO₄ compounds (O bridging different metal ions) associated with titanate, niobate, tantalate, molybdate and tungstate structures. Fig. 2 shows a composite diagram of $\langle M-O-M \rangle$, $\langle M-O-M' \rangle$ and $\langle A-O-W \rangle$ angles in titanates, niobates, tantalates, molybdates and tungstates. Although the data are limited we see in Table 3 and Fig. 2 a good correlation between \varDelta values and angles but with ZrW₂O₈ well above the line formed from the titanates, niobates, tantalates, molybdates and other tungstates. We conclude that Zr-O-W angles alone cannot explain the unusually large Δ value and that ZrW_2O_8 must have characteristics, not present in other tungstates and molybdates, that contribute to the unusually large Δ value of ZrW₂O₈.

4.1.2. Contribution of oxygen displacement factors

Next, we explore the possible contribution of oxygen displacement factors to the large \triangle value of ZrW_2O_8 . In [11], equivalent isotropic displacement factors of oxygen, B(O), normalized to

Table 4			
Oxygen	displacement fact	ors in	ZrW ₂ O ₈

Compound	$\langle B(\mathrm{O}) \rangle$ (Å ²)	$\langle B(W) \rangle$ (Å ²)	< <i>B</i> (O)>/ <i>B</i> (W)>	⊿ (%)	Method ^a	R (%)	Reference
CaWO4 CaWO4	B(O) = 0.772 B(O) = 0.777	0.459 0.410	1.68 1.89	-0.8 -0.8	XRD-S XRD-S	2.3 3.2	[13] [14]
ZrW2O8 O(bridging) O(terminal)	$\langle B(0) \rangle = 2.28$ $\langle B(0) \rangle = 3.45$			12.4	ND-P	6.5	[15]
ZrW2O8 O(bridging) O(terminal)	$\langle B(0) \rangle = 1.69$ $\langle B(0) \rangle = 2.94$	0.80 0.80	1.93 3.36	12.4	ND-P	2.4	[16]
ZrW2O8 O(bridging) O(terminal)	$\langle B(\mathbf{O}) \rangle = 1.56$ $\langle B(\mathbf{O}) \rangle = 2.78$	0.63 0.63	2.48 4.41	12.4	ND-P	3.1	[1]
ZrW ₂ O ₈ O(bridging) O(terminal) Average of bridging O's Average of terminal O's Mean of br and term O's	$\langle B(0) \rangle = 1.307$ $\langle B(0) \rangle = 2.29$	0.478 0.478	2.73 4.79 < 2.35 > < 4.19 > < 2.81 >	12.4	ND-P	9.6	[12]

^a XRD: X-ray diffraction, ND: neutron diffraction, S: single crystal, P: powder.

B(M), were considered as a factor to help explain the high Δ 's of compounds containing Ti-O-Ti, Nb-O-Nb, or Ta-O-Ta chains. However, this connection was not pursued in detail because of the better correlation of Δ with M–O–M angle. In the case of ZrW₂O₈ the "bridging" oxygen atoms, O1 and O2, and guasi-terminal O3 have high equivalent isotropic displacement factors B(O), of 1.59, 1.35 and 1.75 Å², [average = 1.56 Å²] respectively, and normalized to B(W), $\langle B(O)/B(W) \rangle = 2.48$, and B(O) of terminal O4 has the exceptionally high value of 2.78 Å² [(B(O)/B(W) = 4.41] [1]. In Table 4 we summarize oxygen displacement factors in ZrW₂O₈ and compare them to $\langle B(O) \rangle$ and $\langle B(O) \rangle / \langle B(W) \rangle$ of 0.78 and 1.78 $Å^2$, respectively, in CaWO₄ [13,14] where O has 1 W and 2 Ca near neighbors and no Ca-O-W chains. The displacement factors of the bridging oxygen atoms of ZrW₂O₈ deviate in the same sense as in Fig. 2 with larger values of Δ whereas the terminal oxygen of ZrW_2O_8 has significantly larger values of B(O)/B(W). Thus, we conclude that bridging oxygen thermal parameters are important determinants of Δ but that the terminal oxygen atoms in ZrW₂O₈ may have a dominant influence on Δ , i.e., oxygen polarizability, $\alpha(O_{terminal})$, is higher than the normal polarizability of nonterminal oxygen atoms, $\alpha(O_{non-terminal})$.

4.1.3. Born effective charges in ZrW_2O_8

The Born effective charges tensor $Z^*_{\kappa,\alpha\beta}$ of an atom κ is related to the change of the spontaneous polarization P_{α} produced by the displacement of the sublattice of atom κ in direction β under the condition of zero macroscopic electric field *E*:

$$Z^*_{\kappa,\alpha\beta} = \Omega \frac{\partial P_{\alpha}}{\partial \tau_{\kappa,\alpha}}|_{(E=0)}$$

where α and β label the Cartesian coordinates [17]. According to this definition, high values of the BEC's can lead to large polarization, even for small displacements. This was used as the fingerprint of the ferroelectric instability in the family of ABO_3 perovskite compounds like BaTiO₃, where the BEC of Ti and O along the Ti–O direction are anomalously large: +7.2*e* for Ti and -5.8*e* for O instead of a nominal ionic charge of +4*e* and -2*e*, respectively [17]. These anomalous BEC's were related to dynamical charge transfers occurring along the Ti–O chain when the bond length is modified, which is related to hybridization changes between the O 2*p* and the Ti 3*d* orbitals [17,18]. Furthermore,

Fig. 3. Dielectric (squares) and electronic (diamond symbols) polarizabilities of monovalent and trivalent cations vs. r^3 : (a) polarizability of M^+ vs. r^3 and (b) polarizability of M^{3+} vs. r^3 .

these anomalous BEC's have been associated with high electronic polarizability [17,19,20]. They involve both ionic and electronic polarizabilities, the sum of which have been termed "dielectric polarizabilities" derived from dielectric constants in the KHz–MHz range [21]. Because the set of dielectric polarizabilities in [21] did not take cation coordination into consideration, we cannot strictly correlate them with BEC values. However, because

of the strong correlation between dielectric and electronic polarizabilities (see Figs. 3a and b), we assume that the trends in Δ values derived from dielectric polarizabilities approximate the trends in Δ values derived from electronic polarizabilities.

Although we have shown correlations of \triangle with *M*–O–W angles and oxygen displacement factors, we should be able to get a more fundamental understanding of the origin of the discrepancy between observed and calculated polarizabilities by looking at Born effective charges (BEC's), which reflect dynamical charge transfers and hybridization changes between oxygen *p* and metal *d* states. Charge transfer resulting from hybridization between Ti 3*d* and O 2*p* states in BaTiO₃ was demonstrated by Cohen and Krakauer [22] using "first-principles" calculations where they found static charges lower than nominal charges and corresponding to Ba²⁺Ti^{2.89+}O₃^{1.63-}. The BEC's calculated from first principles might be a complementary tool to describe charge transfer [17,18].

To get more insight into the unusually high Δ values of ZrW_2O_8 , the Born effective charge tensors have been calculated and are listed in Table 5. The oxygen BEC's are all highly anisotropic: the bridging oxygen atoms, O1 and O2, similar to the bridging oxygen atoms in the titanate ($A^{2+}TiO_3$) and niobate (A^+NbO_3) perovskites show strong $Z^*(O)$ anisotropy with $Z^*(O)_{\parallel} \gg Z^*(O)_{\perp}$ where the O_{\parallel} and O_{\perp} terms refer to oxygen displacements parallel and perpendicular to the $M^{n+}-O^{2-}-M'^{n+}$ chain, respectively. In Table 5, we also report the eigenvalues of the symmetric part of the Born effective charge tensors of ZrW_2O_8 (present study) along with the previously published data for $Y_2W_3O_{12}$ [7] and WO_3 [23]. Although all reported BEC values for Zr are anomalously high with values ranging from 4.63*e* to 6.03*e* [24,25] (see the summary for BEC's of cubic ZrO₂, tetragonal ZrO₂, monoclinic ZrO₂, ZrSiO₄, BaZrO₃ and PbZrO₃ in [11]), the values of $Z^*(Zr)$ in ZrW_2O_8 are even higher (+7.45*e* and +6.68*e*, compared to the nominal ionic charge of +4*e*). In contrast, however, $Z^*(W)$ in ZrW_2O_8 (between +3.63e and +5.36e) is guite different and considerably smaller than its value in the defect perovskite WO₃ (+12.5e). Z^{*}(W) is in fact surprisingly small in comparison to the nominal charge of +6*e*. The values of $Z^*(W)$ are of the same order of magnitude in $Y_2W_3O_{12}$ (between +3.09*e* and +4.21*e*). The differences in $Z^*(W)$ in ZrW_2O_8 vs. $Z^*(W)$ in WO₃ can probably be ascribed to the coordination of W^{6+} , resulting in lower $Z^*(W)$ for tetrahedral W^{6+} in ZrW_2O_8 and $Y_2W_3O_{12}$ than $Z^*(W)$ with octahedral W^{6+} in WO_3 . Similar BEC differences were noted for quartz [26] and stishovite [27] where Z^* (tetrahedral Si^{4+}) = between 3.02e and 3.45e compared to Z^* (octahedral Si^{4+}) = between 3.80e and 4.05e. Further confirmation of this hypothesis must await the calculation of BEC's in other compounds containing tetrahedral W^{6+} such as CaWO₄ and octahedral W⁶⁺ insert space such as ZnWO₄. The cause of the unusually low $Z^*(W)$ in ZrW_2O_8 could arise from different W 5d–O 2p hybridization in WO₃ and ZrW₂O₈, resulting from tetrahedral WO_4^{2-} groups in ZrW_2O_8 and octahedral WO_6^{6-} groups in WO_3 . Sumithra et al. [7] have suggested that the low $Z^*(W)$ in $Y_2W_3O_{12}$ may be associated with the reverse ordering of the e_g and t_{2g} orbitals in tetrahedral W⁶⁺ coordination.

The BEC's of O1 and O2 in ZrW2O8 $(Z^*(O1)_{\parallel} = 3.72e \text{ and } Z^*(O2)_{\parallel} = 2.19e)$ are smaller than the BEC's of the bridging oxygen atoms in the ferroelectric titanates $(A^{2+}TiO_3)$ and niobates (A^+NbO_3) , [mean = 5.7e (range = 3.8e-7.1e)], but the effective charge of the terminal oxygen atoms, $Z^*(O3)_{\parallel} = -4.65e$ and $Z^*(O4)_{\parallel} = -5.26e$, is of the same order of magnitude than the perovskite oxygen atoms (see Table VIII in [11] for a tabulation of Z_0^* in Ti, Zr, Nb and Ta perovskites). This suggests that the presence of terminal oxygen

Table 5

Calculated Born effective charge tensors (e) for inequivalent atoms of ZrW₂O₈ (present study).

	ZrW ₂ O ₈	Y ₂ W ₃ O ₁₂	WO ₃
Zr	$\begin{pmatrix} 7.19 & -0.06 & -0.45 \\ -0.45 & 7.19 & -0.06 \\ -0.06 & -0.45 & 7.19 \end{pmatrix}$	Y [5.25; 4.85; 4.53]	
W ₁	$ \begin{pmatrix} 7.43, 7.45, 0.08 \\ 5.23 & -0.13 & -0.13 \\ -0.13 & 5.23 & -0.13 \\ -0.13 & -0.13 & 5.23 \end{pmatrix} $	W [4.06; 4.04; 3.09]	W [12.51,12.51,12.51]
W ₂	$ \begin{pmatrix} 5.36; 5.36; 4.97 \\ 4.42 & -0.35 & -0.44 \\ -0.44 & 4.42 & -0.35 \\ -0.35 & -0.44 & 4.42 \end{pmatrix} $	W [4.21; 3.88; 3.34]	
01	$\begin{pmatrix} -1.62 & -1.06 & -1.04 \\ -1.04 & -1.62 & -1.06 \\ -1.06 & -1.04 & -1.62 \end{pmatrix}$	O [-4.08; -0.69; -0.58]	0 [-9.13; -1.68; -1.68]
02	$\begin{pmatrix} -3.72, -0.37, -0.37 \\ -1.24 & -0.49 & -0.46 \\ -0.46 & -1.24 & -0.49 \\ -0.49 & -0.46 & -1.24 \end{pmatrix}$	O [-4.18; -0.66; -0.59]	
03	$\begin{pmatrix} -2.13, -0.77, -0.77 \\ -1.58 & 1.48 & 0.94 \\ 1.53 & -4.25 & 0.94 \\ 0.96 & -1.52 & -1.57 \end{pmatrix}$	O [-4.37; -0.65; -0.61]	
04	$\begin{pmatrix} -0.92 & 1.39 & -0.93 \\ 0.14 & -0.92 & 1.00 \\ -0.93 & 0.97 & -4.75 \end{pmatrix}$ $\begin{bmatrix} -5.26; -0.15; -1.17 \end{bmatrix}$	O [-3.66; -0.68; -0.67]	
		O [-3.68; -0.67; -0.63] O [-3.83; -0.77; -0.60]	

The eigenvalues (e) of the symmetric part of the tensors are also given in bracket for ZrW₂O₈ (present study), Y₂W₃O₁₂ [7] and WO₃ [23].

Table	6
-------	---

Refractive indices and optical dispersion of zirconium, molybdenum and tungsten-containing oxides^a.

Compound	$\langle n_D \rangle^a$	Dispersion (10 ¹⁶ m ²)	E_o (eV obs ^a)	$\langle N_c \rangle$	E_d (eV obs ^{a,b})	E_d (eV ^b calculated)	$\varDelta(E_d)$	⊿ (%)
ZnWO ₄	2.237	82	7.3	6.0	26.50	25	1.5	2.0
CaWO ₄	1.925	73	9.2	6.0	23.60	25	1.4	-0.8
SrWO ₄	1.865	74	9.6	6.0	22.60	25	2.4	-3.2
BaWO ₄	1.842	76	9.6	6.0	21.90	25	3.1	-3.1
PbWO ₄	2.246	104	6.6	6.0	23.50	25	1.5	-0.1
	Mean	<82>	<8.5>					
Zr.894Y.095Hf.011O1.95	2.170	58	8.9	7.8	31.10	32	0.9	0.5
Zr.869Y.131O1.934	2.158	59	8.9	7.7	30.60	31.9	1.3	0.0
Zr.671Y.329O1.835	2.069	72	8.5	7.3	26.10	30	3.9	-1.4
ZrSiO ₄	1.943	64	9.7	6.0	25.70	25	0.7	3.7
ZrSiO ₄	1.945	57	10.3	6.0	27.40	25	2.4	4.6
Zr.99Hf.01SiO4	1.945	58	10.2	6.0	27.00	25	2	3.9
ZrSiO ₄	1.954	54	10.5	6.0	23.40	25	1.6	4.4
Tb ₂ Mo ₃ O ₁₂	1.871	103	8.2	5.2	19.00	21.6	2.6	4.0
$Gd_2Mo_3O_{12}$	1.862	101	8.3	5.2	19.00	21.6	2.6	3.3
ZrW ₂ O ₈	1.8794	114	7.73	4.7	18.07	19.4	1.3	12.4

^a Data from [28].

^b $E_d = \beta \times Z_a \times N_e \times \langle N_c \rangle$; $\beta = 0.26 \text{ eV}$; $Z_a = 2$; $N_e = 8$; and $\langle N_c \rangle = \text{mean cation CN}$.

atoms in ZrW_2O_8 contributes significantly to the large value of \varDelta in Fig. 2.

In summary: the large \triangle of ZrW₂O₈ relative to that of other tungstates and Tb(Gd)₂Mo₃O₁₂ is likely caused by (1) the large Zr–O–W angles and (2) the presence of terminal O4 and "quasiterminal" O3 with (a) their large oxygen displacement values and (b) probably large hybridization of W 5*d*–O_(terminal) 2*p* and Zr *nd*–O 2*p* orbitals.

4.2. Dispersion of ZrW₂O₈

In Shannon et al. [28], the range of dispersions from 50 to $80 \times 10^{-16} \text{ m}^2$ was designated "normal dispersion", and $80-250 \times 10^{-16} \text{ m}^2$ "high dispersion". In Table 6 we note the relatively high dispersion of $114 \times 10^{-16} \text{ m}^2$ of ZrW_2O_8 . High dispersion was associated with the presence of s^2 ions such as As^{3+} , Sb^{3+} , Tl^+ , and Pb^{2+} but not associated with the presence of Zr or W. This is confirmed in Table 6 by comparing dispersion of ZrW_2O_8 with the Zr oxides, $Zr_{1-x}Y_xO_{2-x/2}$ and $ZrSiO_4$ having $A = 54-72 \times 10^{-16} \text{ m}^2$ and tungstates MWO_4 (M = Zn, Ca, Sr, and Ba) having $A = 73-82 \times 10^{-16} \text{ m}^2$. The relatively higher dispersion of PbWO₄ can be traced to the presence of Pb²⁺.

In an alternative form of Eq. (1) [10]:

$$n^{2} - 1 = E_{d}E_{o}/(E_{o}^{2} - (\hbar\omega)^{2})$$
(4)

where in a single oscillator model: $\hbar\omega$ is the photon energy, E_o the average single oscillator (Sellmeier) energy gap in eV and E_d the average oscillator strength in eV. The parameters E_o and E_d were analyzed for more than 100 compounds [10] and resulted in a scheme that worked well for simple single-bond halides and oxides as well as a number of more complex multi-bond oxides containing 2 cations of differing coordination.

In this scheme, $A = 1/E_oE_d$ and E_d is related empirically by Wemple and Domenico [10] to physical parameters by the expression:

$$E_d = \beta N_c Z_a N_e \tag{5}$$

where N_c is the cation coordination number, Z_a the formal valence of the anion, taking on the value of 2 for oxides, N_e the effective number of valence electrons/anion, 8 for oxides, $\beta = 0.26$ eV for ionic compounds and $\beta = 0.37$ eV for covalent compounds. Table 6 compares E_d observed with E_d calculated using Eq. (5). Although Wemple and Domenico [10] used the coordination number of the nearest-neighbor cation for N_c , we find better agreement using the mean cation coordination number $\langle N_c \rangle$. Using the nearestneighbor cation approach [10] it was necessary to define a new value of $\beta = 0.37 \text{ eV}$ to get agreement with the scheelite compounds MWO_4 and $MMOO_4$ but using the mean cation CN of 6, we see satisfactory agreement without resorting to a second value of β . Furthermore, we obtain reasonable agreement between the observed and calculated values of E_d for ZrW_2O_8 . The unusually high dispersion is therefore related more to E_o and N_c where lower values of the energy gap, E_o and N_c result in higher dispersions [28].

5. Summary

Optical dispersion studies of of ZrW_2O_8 allowed the determination of the refractive index, $n_D = 1.8794$, and a total electronic polarizability, $\alpha_{total} = 20.087 \text{ Å}^3$, that is significantly larger than the calculated total polarizability α_T of 17.63 Å³ ($\Delta = +12.4\%$). This large difference relative to that of other tungstates and Tb(Gd)₂Mo₃O₁₂ is likely caused by (1) the large Zr–O–W angles (163°) and (2) the presence of terminal O4 and "quasi-terminal" O3 with (a) their large oxygen displacement values, B(O), and (b) probable large hybridization of W 5*d*-O_(terminal) 2*p* and Zr *nd*–O 2*p* orbitals. The unusually high dispersion of ZrW₂O₈ is related to low values of the energy gap, E_{o_i} and lower cation coordination number N_{c_i} than in other Zr- and W-containing compounds.

Acknowledgments

We gratefully acknowledge G. Kowach for growth of the ZrW_2O_8 crystals, A.W. Sleight for critical reviews of the manuscript and H. Spetzler for encouragement and support at CIRES/CU.

References

[3] O. Medenbach, R.D. Shannon, J. Opt. Soc. Am. B14 (1997) 3299-3318.

J.S.O. Evans, T.A. Mary, T. Vogt, M.A. Subramanian, A.W. Sleight, Chem. Mater. 8 (1996) 2809–2823.

^[2] J.L. Pochou, F. Pichoir, Rech. Aerosp. 3 (1984) 13-38.

- [4] X. Gonze, J.-M. Beuken, R. Caracas, F. Detraux, M. Fuchs, G.-M. Rignanese, L. Sindic, M. Verstraete, G. Zerah, F. Jollet, M. Torrent, A. Roy, M. Mikami, Ph. Ghosez, J.-Y. Raty, D.C. Allan, Comput. Mater. Sci. 25 (2002) 478–492.
- [5] M. Teter, Phys. Rev. B 48 (1993) 5031-5041.
- [6] X. Gonze, C. Lee, Phys. Rev. B 55 (1997) 10355-10368.
- [7] S. Sumithra, U.V. Waghmare, A.M. Umarji, Phys. Rev. B 76 (2007) 24307-24312.
- [8] L. Ouyang, Y-N. Xu, W.Y. Ching, Phys. Rev. B 65 (2002) 113110-113114.
- [9] Z.H. Levine, D.C. Allan, Phys. Rev. Lett. 63 (1989) 1719-1722.
- [10] S.H. Wemple, M. DiDomenico, Phys. Rev. B 3 (1971) 1338-1351.
- [11] R.D. Shannon, R.X. Fischer, Phys. Rev. B 73 (2006) 235111-235128.
- [12] J.D. Jorgensen, Z. Hu, S. Teslic, D.N. Argriou, S. Short, J.S.O. Evans, A.W. Sleight, Phys. Rev. B 59 (1999) 215–225.
- [13] R.M. Hazen, L.W. Finger, J.W.E. Mariathasan, J. Phys. Chem. Sol. 46 (1985) 253-263.
- [14] R.D. Burbank, Acta Cryst. 18 (1965) 88-97.
- [15] M. Auray, M. Quarton, M. Leblanc, Acta Cryst. C51 (1995) 2210-2213.

- [16] A. Mary, J.S.O. Evans, T. Vogt, A.W. Sleight, Science 272 (1996) 90-92.
- [17] Ph. Ghosez, J.P. Michenaud, W. Gonze, Phys. Rev. B 58 (1998) 6224-6239.
- [18] A. Filippetti, N.A. Spaldin, Phys. Rev. B 68 (2003) 45111-45120.
- [19] S. Massidda, M. Posternak, A. Baldereschi, R. Resta, Phys. Rev. Lett. 82 (1999) 430-433.
- [20] S.Y. Savrosav, G. Kotliar, Phys. Rev. Lett. 90 (2003) 56401-56405.
- [21] R.D. Shannnon, J. Appl. Phys. 73 (1993) 348-366.
- [22] R.E. Cohen, H. Krakauer, Phys. Rev. B 42 (1990) 6416-6422.
- [23] F. Detraux, Ph. Ghosez, X. Gonze, Phys. Rev. B 56 (1997) 983-985.
- [24] X. Zhao, D. Vanderbilt, Phys. Rev. B 65 (2002) 75105-75110.
- [25] G.-M. Rignanese, X. Gonze, G. Jun, K. Cho, A. Pasquarello, Phys. Rev. B 69 (2004) 184301-184310.
- [26] X. Gonze, D.C. Allan, M.P. Teter, Phys. Rev. Lett. 68 (1992) 3603-3606.
- [27] C. Lee, X. Gonze, Phys. Rev. Lett. 72 (1994) 1686-1689.
- [28] R.D. Shannon, R.C. Shannon, O. Medenbach, R.X. Fischer, J. Phys. Chem. Ref. Data 31 (2002) 931–970.